Precalculus

11-03 Cross Products

Cross Product

- $\hat{\imath}$ is \qquad vector in $x, \hat{\jmath}$ is unit vector in y, and \hat{k} is unit vector in z
- $\vec{u}=u_{1} \hat{\imath}+u_{2} \hat{\jmath}+u_{3} \hat{k}$ and $\vec{v}=v_{1} \hat{\imath}+v_{2} \hat{\jmath}+v_{3} \hat{k}$

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

If $\vec{u}=\langle-2,3,-3\rangle$ and $\vec{v}=\langle 1,-2,1\rangle$, find $\vec{u} \times \vec{v}$

Properties of Cross Products

- $\vec{u} \times \vec{v}=-(\vec{v} \times \vec{u})$
- $\vec{u} \times(\vec{v}+\vec{w})=(\vec{u} \times \vec{v})+(\vec{u} \times \vec{w})$
- $c(\vec{u} \times \vec{v})=c \vec{u} \times \vec{v}=\vec{u} \times c \vec{v}$
- $\vec{u} \times \vec{u}=0$
- If $\vec{u} \times \vec{v}=0$, then \vec{u} and \vec{v} are parallel
- $\vec{u} \cdot(\vec{v} \times \vec{w})=(\vec{u} \times \vec{v}) \cdot \vec{w}$
- $\vec{u} \times \vec{v}$ is orthogonal to \vec{u} and \vec{v}
- $\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta$

Area of a Parallelogram

$\|\vec{u} \times \vec{v}\|$ where \vec{u} and \vec{v} represent adjacent sides

Triple Scalar Product (shortcut)

$$
\vec{u} \cdot(\vec{v} \times \vec{w})=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
$$

Volume of Parallelepiped

$V=|\vec{u} \cdot(\vec{v} \times \vec{w})|$ where \vec{u}, \vec{v}, and \vec{w} represent adjacent edges

